Exam Seat No:		No: Enrollment No:	Enrollment No:		
Cubico	4 C • J	C.U.SHAH UNIVERSITY Wadhwan City Summar Examination 2014 Data: 20/06/20	14		
		e : 5SC02MTE3 Summer Examination-2014 Date: 20 /06/20 ne:- Number Theory	Date: 20 /06/2014		
Branch/Semester:-M.Sc(Mathematics)/II Time:02:00 Examination: Regular					
Instruc					
 (1) Atte (2) Use (3) Instr (4) Drav 	empt a of Pr ructio v neat	Il Questions of both sections in same answer book / Supplementary ogrammable calculator & any other electronic instrument is prohibited. ns written on main answer Book are strictly to be obeyed. diagrams & figures (If necessary) at right places uitable & Perfect data if needed			
		SECTION-I			
Q-1	a)	For integers <i>a</i> , <i>b</i> , <i>c</i> , if $c a \& c b$, then prove that $c (ma + nb)$, $\forall m, n \in \mathbb{Z}$.	(02)		
	b)	If k is any positive integer, then prove that $k^2 + k + 1$ is not a square number.	(02)		
	c)	Define: Perfect number with example.	(01)		
	d)	If p is prime number and $p ab$, either $p a$ or $p b$. Determine whether the statement is true or false.	(01)		
	e)	Congruence is an equivalent relation. Determine whether the statement is true or false.	(01)		
Q-2	a)	In usual notations prove that, $a,b = ab$.	(05)		
	b)	Prove that every positive integer greater than one can be expressed uniquely as a product of prime, up to the order of the factor.	(05)		
	c)	If p_n is the n^{th} prime numbers, prove that $p_n < 2^{2^n}$, $\forall n$.	(04)		
Q-2	a)	Prove that $S(a) < a\sqrt{a}, \forall a > 2$.	(05)		
		If <i>m</i> is composite integer and $n_m = 111 \dots 111 m$ times, prove that n_m is also composite number.	(05)		
	c)	If $k > 0$ is a common multiple <i>a</i> and <i>b</i> , prove that $\left(\frac{k}{a}, \frac{k}{b}\right) = \frac{k}{[a,b]}$.	(04)		
Q-3	a)	Prove that the integer p is prime if and only if $(p-1)! + 1 \equiv 0 \pmod{p}.$	(05)		
	b)	State Chinese remainder theorem. Solve the system of three congruences $x \equiv 2 \pmod{3}, x \equiv 3 \pmod{5}, x \equiv 2 \pmod{7}$	(05)		
	c)	State and prove Euler's theorem. OR	(04)		
Q-3			(05)		
	a)	In usual notation, prove that $p(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots + \left[\frac{n}{p^m}\right]$, where $p^m \le n < p^{m+1}$	(03)		
	b)	Prove that the necessary and sufficient condition for a positive integer n can be divided by 3 is that the sum of it digit is divisible by three. Is 57349896 divisible by 3? Justify.	(05)		
	c)	Define: Mobious function. Show that Mobious function is multiplicative.	(04)		

20

SECTION-II

SECTION-II				
Q-4	a)	Express the rational number $\frac{19}{51}$ in finite simple continue fraction.	(02)	
	b)	If p, q is a positive solution of $x^2 - dy^2 = 1$, prove that $\frac{p}{q}$ is a convergent	(02)	
		of the continued fraction expansion of \sqrt{d} .		
	c)	The value of any infinite continue fraction is an irrational number. Determine whether the statement is true or false.	(01)	
	d)	State Fermat's Last Theorem.	(01)	
	e)	Define: Algebraic number.	(01)	
Q-5	a)	Prove that any rational number can be written as a finite simple continued fraction.	(05)	
	b)	Prove that general integer solution of $x^2 + y^2 = z^2$ with $x, y, z > 0$; (x, y) = 1, y is even, is given by $x = a^2 - b^2$, $y = 2ab$, $z = a^2 + b^2$, where $a > b > 0$, (a, b) = 1 and one of a, b is odd and the other is even.	(05)	
		Find the positive integer solution of the equation $7x + 19y = 213$.	(04)	
Q-5	a)	Prove that the k^{th} convergent of a simple continued fraction $[a_0; a_1, a_2,, a_n]$ has the value $c_k = \frac{p_k}{q_k}, 0 \le k \le n$.	(05)	
	b)	Find the positive integer solution of the equation $19 x + 20y = 1909$.	(05)	
	c)	Prove that for any positive integer n, the Diophantine equation $x^n + y^n = z^n$ has no positive integer solution less than n.	(04)	
Q-6	a)	If $C_k = \frac{p_k}{q_k}$ is the k^{th} convergent of finite simple continued fraction $[a_0; a_1, a_2,, a_n]$, then prove that	(05)	
	b)	$p_k q_{k-1} - q_k p_{k-1} = (-1)^{k-1}, 1 \le k \le n$. If p is prime and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, a_n is incongruent to 0 modulo p , is a polynomial of degree $n \ge 1$ with integral coefficients, prove that $f(x) \equiv 0 \pmod{p}$ has at most n incongruent solutions modulo p .	(05)	
	c)	Find the unique irrational number represented by the infinite continued fraction $[3; 6, \overline{1, 4}]$.	(04)	
		OR		
Q-6	a)	Prove that the product of two primitive polynomial is primitive.	(05)	
	b)	If $\frac{p_k}{q_k}$ are the convergents of the continuous fraction expansion of \sqrt{d} ,	(05)	
	c)	prove that $p_k^2 - dq_k^2 = (-1)^{k+1} t_{k+1}$ where $t_{k+1} > 0, k = 0, 1, 2,$ Solve the linear Diophantine equation $172 x + 20y = 1000$ by using simple continued fractions.	(04)	

*******20****14****S

